The Microwave Spectrum of Silylisothiocyanate, SiH₃NCS III. The Rotational Zeeman Effect

K.-F. Dössel and D. H. Sutter

Abt. Chemische Physik im Institut für Physikalische Chemie, Universität Kiel

Z. Naturforsch. 34a, 482-487 (1979); received December 22, 1978

The rotational Zeeman effect has been investigated for four different isotopic species of SiH₃NCS. From the observed g-values we have determined the sign of the electric dipole-moment in SiH₃NCS to be ${}^{\oplus}$ H₃SiNCS ${}^{\ominus}$. Thus the previous choice of sign which had been based on the results of a quantum chemical CNDO/2 calculation had to be revised. For the master isotope g_{\perp} , g_{\parallel} and $(\chi_{\perp} - \chi_{\parallel})$ have been determined and were used to calculate the molecular electric quadrupole moment, the paramagnetic and diamagnetic susceptibilities and the second moments of the electronic charge distribution.

Introduction

In our previous papers on the microwave spectrum of SiH₃NCS we have discussed the low frequency bending mode, the r_8 -structure, dipolemoment and the ¹⁴N-quadrupole coupling constant of this molecule [1, 2]. The experimental information on this symmetric top molecule indicated a strong contribution of the mesomer forms (II) and (III) to the electronic ground state,

$$N=C=S$$
 (I)

$$\mathbf{H_3Si} = \mathbf{N} = \mathbf{C} = \mathbf{S}$$
 (II)

$$\mathbf{H_{3}Si} - \overset{\oplus}{\mathbf{N}} \equiv \mathbf{C} - \overset{\smile}{\mathbf{S}} \tag{III}$$

but it remained impossible to decide on the direction of the electric dipole moment (Si positive or negative). To settle this problem we undertook an investigation of the rotational Zeeman effect of four different isotopic species of ${\rm SiH_3NCS}$. To improve the precision of our analysis and to demonstrate the quality of $r_{\rm S}$ -structure determinations we further reinvestigated the rotational spectra of three isotopic species of ${\rm SiH_3NCS}$.

Experimental

The preparation of the samples has been described previously [1, 2]. The spectra were recorded with a conventional 33 kHz square wave Stark effect modulated microwave spectrometer equipped with

Reprint requests to Prof. Dr. D. Sutter, Institut für Physikalische Chemie der Universität Kiel, Abt. Chemische Physik, Olshausenstraße 40-60, D-2300 Kiel. Please order a reprint rather than making your own copy.

0340-4811 / 79 / 0400-0482 \$ 01.00/0

an electromagnet. Details of the design of the Zeeman-microwave-spectrometer may be found elsewhere [3]. To improve the S/N ratio especially for the rare isotopes $^{28}\text{SiH}_3^{14}\text{N}^{12}\text{C}^{34}\text{S}$ and $^{30}\text{SiD}_3^{14}\text{N}^{12}\text{C}^{32}\text{S}$, which where observed in natural abundance ($\sim 4\%$), we used signal averaging [4].

rs-Structure

The pure rotational spectra of $D_3^{28}Si^{14}N^{12}C^{32}S$, $D_3^{28}Si^{14}N^{12}C^{34}S$ and $D_3^{30}Si^{14}N^{12}C^{32}S$ are given in Table 1. The observed frequencies were fitted to the frequency formula [5]:

$$v_{J, K \to J+1, K}$$
 (1)
= $2B(J+1) - 4D_J(J+1)^3 - 2D_{JK}(J+1)K^2$.

A complete list of rotational- and centrifugal distortion-constants for all isotopic species of SiH₃NCS, which have been investigated is given in Table 2.

The r_8 -bond distances [6, 7], which were calculated from the rotational constants of Table 2, show a high consistency for different combinations of isotopes. The difference e.g. between the Si ... S distance determined for SiH₃NCS: $r(\text{Si} ... \text{S}) = 4.4678 \,\text{Å}$ and the one determined for SiD₃NCS: $r(\text{Si} ... \text{S}) = 4.4683 \,\text{Å}$ is only 0.0005 Å. It is found however, that the hydrogen coordinates are changed by deuterium substitution. If we calculate the z-coordinate of the hydrogen atoms relative to the centre of mass of the master isotope $\text{H}_3^{28}\text{Si}^{14}\text{N}^{12}\text{C}^{32}\text{S}$ for the different isotopic combinations, we obtain the following values (in Å units):

- a) from $SiH_3 \rightarrow SiH_2D$: 2.7097 \pm 0.0011,
- b) from $SiH_3 \rightarrow SiD_3$: 2.7075 ± 0.0002 ,
- c) from $SiHD_2 \rightarrow SiD_3\colon -2.7041 \pm 0.0016$.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

D ₃ SiNCS						
$J\! o\! J'$	$9 \rightarrow 10$		$10 \rightarrow 11$		$11 \rightarrow 12$	
K	obs	obs-calc	obs	obs-calc	obs	obs-calc
0	28248.63	0.03	31073.41	0.01	33898.17	-0.01
1	28247.95	0.03	31072.65	0.00	33897.35	-0.01
	28245.89	0.03	31070.39	0.01	33894.89	0.00
$\frac{2}{3}$	28242.44	0.01	31066.63	0.01	33890.79	0.01
4	28237.64	0.00	31061.34	0.00	33885.01	-0.01
5	28231.47	-0.00	31054.54	-0.01	33877.63	0.01
6	28223.91	-0.02	31046.25	-0.01	33868.56	-0.02
7	28215.01	-0.01	31036.44	-0.03	33857.87	-0.01
8	28204.70	-0.04	31025.11	-0.04	33845.52	-0.03
9	28193.07	-0.01	31012.33	0.00	33831.57	0.00
10	_	-	30998.03	0.01	33815.96	0.02
11	_	_	_	_	33798.75	0.07
$D_3^{30}SiN($	CS					
$J\! o\!J'$	$9 \rightarrow 10$		$10 \rightarrow 11$		$11 \rightarrow 12$	
\boldsymbol{K}	obs	obs-calc	obs	obs-calc	obs	obs-calc
0	27546.50	0.00	30301.08	0.00	33055.63	0.00
1	27545.85	0.00	30300.36	0.00	33054.86	0.01
2	27543.91	0.00	30298.21	-0.01	33052.50	-0.02
3	27540.67	0.00	30294.66	0.00	33048.62	-0.01
4	27536.16	0.02	30289.69	0.02	33043.18	0.00
5	27530.28	-0.02	30283.24	-0.02	33036.20	0.01
6	27523.18	0.00	30275.43	0.01	33027.64	0.00
D ₃ SiNC ³	4S					
$J\! o\!J'$	$9 \rightarrow 10$		$10 \rightarrow 11$			
\boldsymbol{K}	obs	obs-calc	\mathbf{obs}	obs-calc		
0	27450.26	-0.01	30195.20	0.00		
1	27449.65	0.02	_	_		
2	27447.69	-0.01				

Table 1. Microwave spectra of three isotopic species of silylisothiocyanate (in MHz). The observed frequencies are compared to the values calculated from the molecular constants listed in Table 2 according to Equation (1).

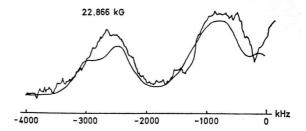
Species	B_0/MHz	D_{JK}/kHz	D_J/kHz	
(1) H ₃ ²⁸ Si ¹⁴ N ¹² C ³² S	1516.040 (1)	41.958 (6)	0.087 (4)	
(2) H ₃ ²⁹ Si ¹⁴ N ¹² C ³² S	1493.640 (1)	40.50 (2)	0.089(4)	
(3) H ₃ ³⁰ Si ¹⁴ N ¹² C ³² S	1472.411 (3)	39.26 (3)	0.088(9)	
(4) H ₃ ²⁸ Si ¹⁵ N ¹² C ³² S	1514.552 (1)	42.30(1)	0.086(6)	
(5) H ₃ ²⁸ Si ¹⁴ N ¹³ C ³² S	1514.169 (1)	41.76 (1)	0.074(6)	
(6) H ₃ ²⁸ Si ¹⁴ N ¹² C ³⁴ S	1473.556 (2)	40.01 (3)	0.089(6)	
(7) D ₃ ²⁸ Si ¹⁴ N ¹² C ³² S	1412.443 (1)	34.264 (5)	0.066(5)	
(8) $D_3^{30}Si^{14}N^{12}C^{32}S$	1377.342 (1)	32.39(1)	0.083(3)	
(9) $D_3^{28}Si^{14}N^{12}C^{34}S$	1372.529	32.1	0.076	
	B_0/MHz	C_{0}/\mathbf{MHz}	D_{JK}/kHz	
(10) $H_2D^{28}Si^{14}N^{12}C^{32}S$	1483.336 (25)	1474.854 (25)	40.5(1)	
(11) $HD_2^{28}Si^{14}N^{12}C^{32}S$	1448.957 (33)	1440.293 (33)	37.0 (1)	

Table 2. Rotational constants and centrifugal distortion constants of eleven isotopic species of SiH₃NCS. Except for the two partially deuterated compounds [16] all spectra have been reported in this series [1], [2]. Because D_J was not determined in Ref. [16] we have assumed a value of $D_J = 0.08$ kHz for the last two isotops.

It is obvious, that the z-coordinate r_z decreases, as the number of deuterium bonds N in the isotopic combination used increases (N=1 for a), N=3 for b), and N=5 for c)). Under the assumption of a linear dependence of r_z on N, we have calculated the z-coordinates of the hydrogen- and deuterium-atoms in the limiting cases of the SiH₃-

group (N=0) and the SiD₃-group (N=6). This leads to slightly different effective bond distances and bond angles within the SiH₃- and SiD₃-groups (see Figure 1). The experimental uncertainties in the $r_{\rm s}$ -coordinates are $2 \cdot 10^{-4}$ Å for the heavy atoms and $1 \cdot 10^{-3}$ Å for the hydrogen atoms.

Fig. 1. $r_{\rm s}$ -structure of silylisothiocyanate, H₃SiNCS. The structural data for the deuterated compound D₃SiNCS only differ in the region of the silyl-group. The values for the D₃Si-group are given in bracketts. Since vibrational effects largely cancell in the equations used for the $r_{\rm s}$ -structure determination, differences between $r_{\rm s}$ - and $r_{\rm e}$ -values are believed to be smaller than $1\cdot 10^{-3}$ Å.


Zeeman Effect

To analyze the rotational Zeeman effect we used the following Hamiltonian [8]:

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{rot}} + \mathcal{H}_{Q} + \mathcal{H}_{g}^{\text{mol}} + \mathcal{H}_{g}^{\text{nucl}} + \mathcal{H}_{\chi} + \mathcal{H}_{\text{TS}},$$
(2)

where the appropriate matrix elements in the uncoupled basis $|J, K, M_J, I, M_I\rangle$ are given in [8].

Because the splitting of the $J \to J+1$, K=0 transitions in the magnetic field is independent of J (at least in the rigid rotor limit), we used high J transitions between 26.5 and 38 GHz to determine g_{\perp} (see Table 3). g_{\parallel} and $(\chi_{\perp}-\chi_{\parallel})$ of the master isotope ²⁸SiH₃¹⁴N¹²C³²S were obtained from an investigation of the $J \to J'=3 \to 4$, K=3 transition at 12 GHz. The analysis of these splittings is

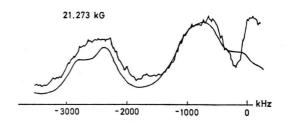


Fig. 2. Comparison between the experimental and calculated line profiles for the $J \rightarrow J' = 3 \rightarrow 4$, K = 3 rotational transition and magnetic fields of 21.273 and 22.866 kG under the selection rule $\Delta M = \pm 1$. Because the $J \rightarrow J' = 3 \rightarrow 4$, K = 2, 1, 0 transitions are located only 1600, 2560 and 2880 kHz above the K = 3 transition, they interfere with the upper part of the K = 3 Zeeman pattern and only the low frequency half of the pattern is therefore given in the figure. The origin of the frequency scale is located at the position of the theoretical centre frequency $v^c = 8B - 256D_J - 72D_{JK} = 12125.277$ MHz of the K = 3 transition. For the calculated line profile we used the value of the 14 N quadrupole coupling constant eqQ = + 0.75 MHz [2], the electric dipole moment of $|\mu_{e1}| = 2.38$ D, a cell temperature of -60 °C, a halfintensity halflinewidth of 60 KHz and the Zeeman parameters of Table 4.

Table 3. Zeeman splittings of the $J \rightarrow J+1$, K=0 rotational transitions of four different isotopic species of SiH₃NCS (in kHz) under the selection rule $\Delta M=\pm 1$. In the rigid rotor limit the observed doublett splittings are independent of J. The effect of the susceptibility anisotropy $\Delta \chi$ on the different $M_J \rightarrow M_J \pm 1$ components within the two Zeeman components of each transition can be neglected for the high J-transitions used here, and only the g_+ -values were fitted to these splittings.

J o J'	$8 \rightarrow 9$		$9 \rightarrow 10$		$10 \rightarrow 11$		$11 \rightarrow 12$	
	obs	obs-calc	obs	obs-cale	obs	obs-calc	obs	obs-calc
H ₃ ²⁸ Si ¹⁴ N ¹² C ³⁴ S								
$21.273 \mathrm{kG}$	454	-17	486	15	468	— 3		-
$22.866 \mathrm{kG}$	506	0	514	8	506	0	_	_
$H_{3}^{28}Si^{14}N^{12}C^{32}S$								
21.273 kG	487	- 6	503	10	486	- 7	_	_
22.866 kG	532	2	543	13	520	-10	_	-
$D_3^{28}Si^{14}N^{12}C^{32}S$								
21.273 kG	_	_	481	12	450	-19	471	2
22.866 kG		_	514	10	498	- 6	502	$-{2\atop 2}$
$D_3^{30}Si^{14}N^{12}C^{32}S$								
$21.273~\mathrm{kG}$	_		480	20	450	-10	459	- 1
$22.866~\mathrm{kG}$			528	33	479	-16	467	-18

strongly impeded by a) the presence of a non-negligible ¹⁴N-quadrupole coupling, b) the interference from nearby K=2,1,0 lines and c) the mixing of different M_J -substates by the translational Stark-effect [9], which causes a smearing of the lines.

The resulting molecular Zeeman parameters are listed in Table 4. In Table 5 we present a listing of

Table 4. Molecular Zeeman parameters of the master isotope ${\rm H_{3}^{28}Si^{14}N^{12}C^{32}S}.~g_{\perp}$ was calculated from the splittings listed in Table 3. g_{\parallel} and $(\chi_{\perp}-\chi_{\parallel})$ were determined by comparing observed and calculated line profiles for the $J\to J'=3\to 4$, K=3 transition (see Fig. 2 and 3). For comparison we also give the Zeeman parameters of silylbromide [8].

	SiH ₃ NCS	SiH ₃ Br
g_{\perp}	-0.01521 (10) -0.315 (5)	-0.02185 (13) -0.3185 (5)
$rac{\chi_{\perp}-g_{\parallel}}{10^{-6} ext{erg}/(ext{G}^2 ext{mol})}$	28.0 (30)	2.7 (3)

molecular quantities which may be derived from the Zeeman data given in Table 4, from the molecular structure, and from the bulk susceptibility, for which an approximate value was calculated from Pascals constants [17]. We note that — as expected — the paramagnetic susceptibilities χ_{\parallel}^p of SiH₃NCS and SiH₃Br turn out almost the same. Since they originate from those parts of the molecule where the electron configuration lacks cylindrical symmetry [10] they are largely determined by the structure of the silylgroup.

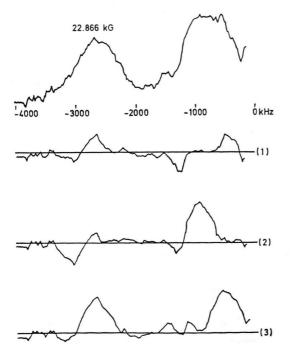
Sign of the Electric Dipole Moment

The rotational g-values, when measured for two or more isotopic species of a molecule, can be used to calculate the direction and approximate magnitude of the electric dipole moment. For a substitution, which shifts the centre of mass along the symmetry axis z by Δz , so as to change all coordi-

Table 5. Molecular quantities derived from the experimental data given in Table 4. The values for SiH₃Br are taken from [8]. The bulk magnetic susceptibilities are calculated from the Pascal constants [17], with an assumed uncertainty of $\pm 10\%$ for SiH₃Br and — because of the exceptional bonding situation — $\pm 20\%$ for SiH₃NCS. The A-rotational constant has been calculated from the $r_{\rm s}$ -structure.

		SiH ₃ NCS	SiH ₃ Br
Molecular quadrupole moments in units of 10 ⁻²⁶ esu cm ²			3 +
$\begin{split} Q_{\parallel} &= \frac{ e }{2} \left\{ \begin{array}{l} \text{nuclei} \\ \sum\limits_{\epsilon} Z_n \left(2 z_n{}^2 - x_n{}^2 - y_n{}^2 \right) - \left< 0 \sum\limits_{n} \left(2 z_^2 - x_^2 - y_^2 \right) 0 \right> \\ &= - \frac{\hbar \left e }{4 \pi M_{\text{P}}} \left\{ \frac{g_{\parallel}}{A} - \frac{g_{\perp}}{B} \right\} - \frac{4 m c^2}{\left e } \left\{ \chi_{\parallel} - \chi_{\perp} \right\} \end{split} \right. \end{split}$	$\left. igg _{Q_{ }} ight.$	16.6 ± 3.7	-0.1 ± 0.4
Second moments of the nuclear charge distribution calculated from	$\sum_{n} Z_n z_n^2$	$\textbf{179.5} \pm \textbf{0.2}$	$\textbf{61.5} \pm \textbf{0.1}$
the geometry of the nuclear frame. The units are \mathring{A}^2 .	$\sum_{n} Z_n z_n^2$ $\sum_{n} Z_n x_n^2$	3.018 ± 0.004	2.983 ± 0.004
Paramagnetic susceptibilities in units of 10^{-6} erg/($\mathrm{G^2}$ mol)	n		
$\chi_{\parallel}{}^{ m p} = -rac{N_L e^2}{2m^2c^2}\sum_{m r}^{ m ex. states} rac{ \langle 0 L_z u angle ^2}{E_0-E_{m r}}$	$\chi_{ }^{\mathbf{p}}$	$\textbf{33.61} \pm \textbf{0.16}$	$\textbf{33.39} \pm 0.05$
$=-rac{N_L e^2}{4 m c^2} \left\{rac{\hbar}{4 \pi M_{ m P}} rac{g_{\parallel}}{A} - \sum_{m{n}}^{ m nuclei} Z_{m{n}}(x_{m{n}}^2 + y_{m{n}}^2) ight\}$	$\chi_{\perp}^{\mathbf{p}}$	796.1 ± 0.8	284.7 ± 0.5
Diamagnetic susceptibilities in units of 10^{-6} erg/(G ² mol)			
$\chi_{\parallel}^{ extbf{d}} = -rac{N_L e^2}{4mc^2}\langle 0^{ }\sum_{arepsilon}^{ ext{electrons}} x_{arepsilon}^2 + y_{arepsilon}^2 0 angle$	$\chi_{ }^{\mathbf{d}}$	-92.5 ± 10.2	-87.6 ± 5.4
$=\chi_{\parallel}-\chi_{\parallel}^{\mathbf{p}}$	$\chi_{\perp}^{\mathbf{d}}$	$\mathbf{-826.9 \pm 9.9}$	-336.2 ± 5.8
Bulk susceptibility in units of $10^{-6} \rm erg/(G^2\ mol)\ \chi = (\chi_\parallel + 2\chi_\perp)/3$	χ	$\mathbf{-40.2} \pm 8.0$	-52.4 ± 5.2
Second moments of the electronic charge distribution in ${\rm \AA}^2$			
$egin{array}{l} \left. egin{array}{l} \left. egin{array}{l} \left. egin{array}{l} \left. egin{array}{l} \left. egin{array}{l} 2 m c^2 \end{array} \left(2 \chi_{\perp} - \chi_{\parallel} ight) \end{array} ight. \end{array} ight.$	$\langle 0 \sum_{\varepsilon} z_{\varepsilon}^2 0 \rangle$	184.0 ± 3.7	$\textbf{68.9} \pm \textbf{2.0}$
$-rac{\hbar}{8\pi M} \Big(rac{2g_{\perp}}{B} - rac{g_{\parallel}}{A}\Big) + \sum\limits_{m{n}}^{ m nuclei} \!$	$\langle 0 \mid \sum_{\varepsilon} x_{\varepsilon^2} \mid 0 \rangle$	$ ightarrow 10.9 \pm 3.7$	10.3 ± 2.0

nates $z_{\mathbf{k}'} = z_{\mathbf{k}} - \Delta z$, and which changes I_{\perp} and g_{\perp} to I_{\perp}' and g_{\perp}' we have [8]:


$$g_{\perp}{'}\,I_{\perp}{'} - g_{\perp}\,I_{\perp} = -\,rac{2\,M_{\,\mathrm{p}}}{|e|}\,\varDelta z\,\mu_{\mathrm{el}}\,.$$
 (3)

We measured the g_{\perp} -values for four isotopic species of SiH₃NCS and obtained the following results:

Isotope No.		g_{\perp}	$egin{array}{c} g_{\perp} I_{\perp} / \ \mathrm{amu \AA^2} \end{array}$
(1) (2) (3) (4)	$\begin{array}{c} H_3^{28}\mathrm{Si}^{14}\mathrm{N}^{12}\mathrm{C}^{34}\mathrm{S} \\ H_3^{28}\mathrm{Si}^{14}\mathrm{N}^{12}\mathrm{C}^{32}\mathrm{S} \\ D_3^{28}\mathrm{Si}^{14}\mathrm{N}^{12}\mathrm{C}^{32}\mathrm{S} \\ D_3^{30}\mathrm{Si}^{14}\mathrm{N}^{12}\mathrm{C}^{32}\mathrm{S} \end{array}$	$\begin{array}{c} -0.01453(15) \\ -0.01521(10) \\ -0.01445(15) \\ -0.01419(25) \end{array}$	-4.983 -5.070 -5.170 -5.207
Combi- nation	$(g_{\perp}'I_{\perp}'-g_{\perp}I_{\perp})/[$ ar	mu $ m \AA^2$] $\Delta z/ m \AA$	$\mu_{ m el} = \sum_{f i} q_i r_i / { m D}$
$ \begin{array}{c} (3)-(1) \\ (4)-(1) \\ (3)-(2) \\ (4)-(2) \end{array} $	$\begin{array}{c} -0.187 \pm 0.102 \\ -0.224 \pm 0.142 \\ -0.100 \pm 0.085 \\ -0.137 \pm 0.125 \end{array}$	-0.1376 -0.1868 -0.0887 -0.1379	$\begin{array}{c} -3.24 \pm 1.77 \\ -2.86 \pm 1.81 \\ -2.69 \pm 2.28 \\ -2.37 \pm 2.16 \end{array}$
Weighte	d average:	$\overline{\mu}_{ m el}/D$ $=$	-2.85 ± 0.99

The results show unequivocally, that the silicon atom is situated at the positive end and that the sulfur atom is situated at the negative end of the molecular dipole:

$$\oplus H_3Si-N-C-S\Theta$$
.

The absolute value of $|\mu_{\rm el}| = 2.8 \pm 1.8$ D determined here is in agreement with the value of $|\mu_{\rm el}| = 2.38 \pm 0.02$ D determined from the molecular Stark effect [2]. The result indicates, that in a simplified picture the electronic ground state of SiH₃NCS may be described by a 65% to 35% mixture of the mesomer forms (II) and (III) [2], which is in good agreement with the observed bond distance of the Si-N bond [2].

Discussion

The result of the experimental determination of the direction of the electric dipole moment (Si at positive end) came as a surprise to us, since an earlier semiempirical quantum chemical calculation with Poples CNDO/2 program [11, 2] had given the opposite sign. The CNDO/2 value for the dipole moment is $+0.8 \,\mathrm{D}$ (Si at negative end) and includes a +3.2 D contribution from p-d orbital overlap in the region of the Si-N bond. Apparently the CNDO/2 program overestimates this effect by far and the question may be raised whether at all the silicon 3d orbitals are involved to a significant extent in the electron configuration of SiH₃NCS. The doubts as to the significance of the Si-3d orbitals for the bonding may be further aggrevated by the results of a quantum chemical STO-3G calculation on SiH₃NCS carried out at the University of Bielefeld by Engelbrecht and Schöller [12]. The STO-3G program which does not explicitly include 3d-type orbitals at the silicon atom not only did predict the stability of the linear arrangement of the SiNCS chain, but also calculated the electric dipole moment as $\mu_{STO-3G} = -3.5 \text{ D}$ (Si at positive end), i.e. it predicted the correct sign of the dipole moment, although the calculated value is about 1.1 D off the experimental value determined from the Stark effect. However, we doubt, that the

Fig. 3. Comparison of the observed $J \rightarrow J' = 3 \rightarrow 4$, K = 3, $M_J \rightarrow M_J \pm 1$ transition at 22.866 kG with calculated Zeeman patterns (observed minus calculated). To demonstrate the accuracy of the analysis shown in Fig. 2, we have successively varied g_{\parallel} and $\Delta \chi$ by two standard deviations and plotted the difference between observed and calculated intensities. The best values for g_{\parallel} and $\Delta \chi$ ($g_{\parallel} = -0.315$ and $\Delta \chi = 28.0$) which were obtained in a fit to the observed spectra shown in Fig. 2, were used in the first calculation (1). For the second calculation (2) we have varied $\Delta \chi$ ($g_{\parallel} = -0.315$, $\Delta \chi = 22.0$) and for the third one (3) we have varied g_{\parallel} ($g_{\parallel} = -0.325$, $\Delta \chi = 28.0$).

results of the STO-3G program may be used to entirely discard the idea of $p\pi$ -d π bonding in SiH₃NCS, since the same program gave comparatively poor results when applied to disilylether, an other molecule in which $p\pi - d\pi$ bonding is thought to be important [13, 14]. In H₃Si-O-SiH₃ the Si-O-Si bond angle calculated with the STO-3G program turns out much smaller than the observed value ($\langle SiOSi_{STO-3G} = 124.2^{\circ}$ [12] as compared to $\angle SiOSi_{exp} = 145^{\circ}$ [14]) and the potential barrier for the Si-O-Si bending vibration at the linear configuration is calculated much too high $(V_{STO-3G} = 3.5 \cdot 10^3 \text{ cm}^{-1} \text{ [12]}$ versus $V_{\text{exp}} = 0.112 \cdot 10^3 \text{ cm}^{-1}$ [15]). In view of the comparatively short Si-N bond distance [2] we therefore still believe, that inclusion of Si-3d type orbitals will be necessary, if one wants to describe the bonding in SiH3NCS correctly. Certainly silvlisothiocvanate should be an interesting candidate for a refined ab initio quantum chemical calculation.

Wir danken Herrn Prof. Dr. H. Dreizler für die kritische Durchsicht des Manuskripts. Der Deutschen Forschungsgemeinschaft sowie dem Fonds der Chemischen Industrie sei für die Bereitstellung von Sach- und Personalmitteln gedankt. Die numerischen Rechnungen wurden auf der PDP-10 Anlage des Rechenzentrums der Universität Kiel durchgeführt.

- [1] K.-F. Dössel and A. G. Robiette, Z. Naturforsch. 32a, 462 (1977).
- [2] K.-F. Dössel and D. H. Sutter, Z. Naturforsch. 32a, 473 (1977).
- [3] D. H. Sutter, Z. Naturforsch. 26a, 1644 (1971).
- [4] U. Andresen, Ph. D. Thesis, Kiel 1972.
 [5] Z. F. Slawsky and D. M. Dennison, J. Chem. Phys. 7, 509 (1939).
- [6] J. Kraitchman, Am. J. Phys. 21, 17 (1953).
- C. C. Costain, J. Chem. Phys. 29, 864 (1958).
- [8] K.-F. Dössel and D. H. Sutter, Z. Naturforsch. 34a, 469 (1979) and references cited therein.
- [9] L. Engelbrecht and D. H. Sutter, Z. Naturforsch. 30a, 1265 (1975).
- [10] D. H. Sutter and W. H. Flygare, Topics in Current Chemistry 63, 91 (1976).
- [11] J. Pople and D. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York 1970. The original parametrization was used for the calculations.

- [12] L. Engelbrecht and W. W. Schöller, Universität Bielefeld, private communication.
- [13] K.-F. Dössel, Ph.D. Thesis, Kiel 1978.
- [14] A. Almenningen, O. Bastiansen, V. Ewing, K. Hedberg, and M. Traetteberg, Acta Chem. Scand. 17, 2455
- [15] J. R. Durig, M. J. Flanagan, and V. F. Kalasinsky, J. Chem. Phys. 66, 2775 (1977). In view of our own difficulties with the interpretation of the microwave spectrum of SiH₃-O-SiH₃ which indicate the presence of a very low barrier for the bending vibration [Z. Naturforsch. 33a, 1190 (1978)], we believe that their assignment of the vibrational spectrum is correct.
- [16] D. R. Jenkins, R. Kewley, and T. M. Sugden, Trans. Faraday Soc. 58, 1284 (1962).
- [17] H. F. Hameka, Advanced Quantum Chemistry, Adison-Wesley Publ. Co. Reading (Mass.) 1965, p. 180.